Add. 3 Course program for the second level (second cycle - postgraduate											
1.	Course title		0	Clean fossil and alternative fuels energy							
2.	Code		1	1M6SEE09							
3.	Study group(s)			SEE							
4.	The organizer of the study program (unit,		nit, "	"Ss. Cyril and Methodius" University in Skopje,							
	institute, department)		F	Faculty of Mechanical Engineering - Skopje							
5.	Level (first, second, third degree)		S	Second							
6.	Academic year / semester		7	V / summer 7. ECTS credits 6							
8.	Professor		A	Assoc. prof. dr. Risto Filkoski							
9.	Prerequisites for enrolling the course		Ν	None							
10.	Course obje	ctives (competences):									
	Acquiring k	nowledge about the method	ds and t	techniques for effici	ent utilisa	tion of fossi	land				
	alternative fuels. Acquiring knowledge regarding energy technologies for environmental										
	protection that apply to compute in plants. Analysis calculation and optimal performance of										
	compution systems. Modelling and simulation techniques of aerodynamics, computing and										
	heat transfer in thermal energy systems (boilers, combustors, furnaces, heat exchangers etc.)										
11.	Course content:										
	Properties of fossil and alternative fuels. Energy transformations of fuels: combustion pyrolysis										
	gasification, liquefaction. Mass and energy balance of combustion process. Kinetics and										
	dynamics of fuels combustion.										
	Decomposing and handling of colid firsts Matheda and techning for the first first										
	evamples of	Processing and handling of solid fuels. Methods and techniques for combustion of solid fuels,									
		application.									
	Processing and handling of liquid and gaseous fuels. Methods and techniques for combustion of										
	solid fuels, examples of application.										
	Environmen	tal considerations. Classifi	cation of	of pollutants, source	s of plant	emissions a	nd				
	discharges.	Air pollution control. Tech	niques	for reduction of soli	d particle	s emission.					
	Thermodyna	amics and kinetics of SO ₂ f	ormatio	on. Methods and tec	hniques fo	or SO ₂ emis	sion				
	reduction. T	hermodynamics and kineti	cs of N	O _x formation. Methe	ods and te	echniques fo	r NO _x				
	emission rec	luction. Methods and techn	iques f	or combined deSO ₂ /	deNO _x . N	Aethods for	CO				
	emission reduction. Greenhouse gases emission. Methods and techniques for reduction of GHG										
	emission.										
	Modelling simulation and optimisation techniques of humans, combustion chambers, boiler										
	plants furna	plants, furnaces, thermal energy facilities. Modelling of the pollutants formation and reduction									
10	plants, furnaces, mermai energy fuenties. Wodening of the pollutants formation and feduction.										
12.	Study methods: Interactive lectures, auditory and/or laboratory practice, selfrunning and/or team										
10	work on project assignments, selfrunning assignments										
13.	Total hours			0 EC1S x 30 nours = 180 nours							
14.	Hours allocation per activity:			30+30+40+30+50 = 180 hours							
15.	Lectures/La	b	15.1.	Lectures			30 hours				
	D 1		15.2.	Lab (student work))		30 hours				
16.	Project Wor	k/Assignments	16.1.	Project assignment	S		40 hours				
			16.2	Individual assignm	ents		30 hours				
			- 0.2.	uosigiii			20 110 010				

				16.3.	Self-study		50 hours					
17.	Points/Marks:											
	17.1.]	Exams		50 points							
	17.2.]	Projects				45 points					
	17.3.		Attendance				5 points					
18.	Gradin	g scale	2		Under	50	5 (five) (F)					
101					51 - 60 poin	nts	6 (six) (E)					
					61 - 70 points		7 (seven) (D)					
					71 - 80 poin	nts	8 (eight) (C)					
					81 - 90 poir	nts	9 (nine) (B)					
				91 - 100 poin	nts	10 (ten) (A)						
19.	Prerequ	isites	for taking the final exam	A	Activities 15.2 and 1							
20.	Langua	ige		E	English							
21.	Course	evalu	ation	S	Student questionnaire							
22.	Textbo	oks										
	22.1	Inst	truction materials									
		No.	Author		Title	Publisher	Year					
		1	Edited by J.B. Kitto and	S	Steam. It's	The Babcock	2005					
			S.C. Stultz	2	eneration and use.	& Wilcox						
				Ē	Ed. 41	Compaany						
		2.	Baukal C.E. et al.	(CFD in Industrial	CRC Press	2001					
				(Combustion							
		3.	Group of authors	Ι	PPC, Ref.	European	2006					
				Ι	Document on BAT	Commission,						
				t	or Large	Seville						
	22.2	Combustion Plants										
	22.2	22.2 Supplemental Instruction Materials			T '4	D 11' 1	37					
		NO.	Author		Ittle	Publisher	Year					
		1.	Warner, Davis and War	k A	Air Pollution: Its	Addison-	2003					
					Drigin and Control,	Wesley-						
		2		3	Edition	Longman	2000					
		۷.	retrovski I. J.	e	d.	UKIIVI	2009					
		3.	Baukal C.E. et al.	ŀ	Heat Transfer in	CRC Press	2000					
				I	ndustrial							
				0	Combustion							